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Abstract

Automatic Speech Recognition (ASR) for low-
resource languages remains a challenging task
due to limited training data. This paper in-
troduces a comprehensive study exploring the
effectiveness of Whisper, a pre-trained ASR
model, for Northern Kurdish (Kurmanji) an
under-resourced language spoken in the Middle
East. We investigate three fine-tuning strate-
gies: vanilla, specific parameters, and addi-
tional modules. Using a Northern Kurdish fin-
tuning speech corpus containing approximately
68 hours of validated transcribed data, our ex-
periments demonstrate that the additional mod-
ule fine-tuning strategy significantly improves
ASR accuracy on a specialized test set, achiev-
ing a Word Error Rate (WER) of 10.5% and
Character Error Rate (CER) of 5.7% with Whis-
per version 3. These results underscore the
potential of sophisticated transformer models
for low-resource ASR and emphasize the im-
portance of tailored fine-tuning techniques for
optimal performance.
Keywords: Kurdish Kurmanji, Automatic
Speech Recognition (ASR) systems, Whisper
model, low-resource languages, and fine-tuning
approaches

1 Introduction

Automatic speech recognition (ASR) involves con-
verting spoken language into written text. Over the
past fifty years, ASR technology has significantly
advanced and is now widely applied in various do-
mains, including voice assistants (Daneshfar and
Jamshidi, 2022), video transcription, and speech-
to-text (Zuluaga-Gomez et al., 2023). For major
international languages like English, ASR systems
have achieved near-human-level accuracy, deliv-
ering robust, fast, and precise results. However,
out of the approximately 7,000 languages spoken
worldwide, most lack adequate training resources.
Nearly 40% of these languages are endangered,
with fewer than 1,000 speakers each (Radford et al.,

Figure 1: The main architecture of the proposed method.

2023). The scarcity of transcribed data for these
low-resource languages hampers the training of
large neural networks, resulting in poor perfor-
mance and limited real-world application (Abdul-
lah et al., 2024a). ASR for low-resource languages
has, therefore, become a critical research focus.
Recent advancements have introduced specialized
models like HuBERT (Hidden-Unit BERT) (Hsu
et al., 2021), Wav2Vec 2.0 (Baevski et al., 2020),
SeamlessM4T-v2 (Barrault et al., 2023), and Whis-
per (Radford et al., 2023). These models leverage
advanced training techniques to enhance ASR per-
formance in multilingual and low-resource settings.
For instance, HuBERT utilizes robust pre-training,
Wav2Vec 2.0 employs self-supervised learning for
better speech representation, SeamlessM4T-v2 ex-
cels in multilingual tasks, and Whisper performs
ASR across 100 languages simultaneously, integrat-
ing speech translation, language identification, and
speech activity detection.

This study investigates the application of Whis-
per models for ASR in Northern Kurdish (NK),
a branch of the Kurdish language, primarily spo-
ken in parts of Turkey, Syria, Iraq, and Iran. The
distinct phonetic and grammatical features of NK
pose unique challenges and opportunities for ASR
systems. We address three key questions in this
context:
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1. To what extent can fine-tuning enhance per-
formance?

2. Which parts of the model are essential for
effective fine-tuning?

3. What are the pros and cons of parameter-
efficient fine-tuning methods?

To explore these questions, we applied three fine-
tuning strategies (vanilla, specific parameter, and
additional module fine-tuning) on a small, labeled
NK dataset. Our results showed substantial perfor-
mance improvements across all strategies. Vanilla
fine-tuning boosted overall performance, specific
parameter fine-tuning further enhanced accuracy,
and additional module fine-tuning prevented catas-
trophic forgetting with minimal performance loss,
achieving parameter efficiency. The primary con-
tributions of this paper are as follows:

1. Exploring Whisper fine-tuning strategies for
low-resource ASR

2. Investigating the internal mechanisms of
Whisper’s speech encoding

3. Comparing the advantages and disadvantages
of various fine-tuning strategies

4. Identifying the most effective model for low-
resource languages, offering valuable insights
for future research and practical applications.

2 Background

2.1 Northern Kurdish

Kurdish is a cover term for a cluster of dialects
spoken by millions of people in a contiguous area
of western Iran, northern Iraq, eastern Turkey, east-
ern Syria, and separated regions in the Caucasus
and Khorasan. Among varieties of Kurdish, North-
ern Kurdish (also known as Kurmanji) and Central
Kurdish (also known as Sorani) have more writ-
ten resources (Öpengin, 2020). Although a large
population speaks Kurdish, it suffers from the un-
availability of sufficient resources for its computa-
tional processing purposes. Figure 2 illustrates the
geographic distribution of Northern Kurdish in the
Middle East region.

Northern Kurdish is written in two alphabets: a
modified Latin script and a modified Arabic script.
The Latin script is more commonly used, while the
Arabic script is mainly used in the Dihok province

Figure 2: The map of Northern Kurdish-speaking areas
(in green) in the Middle East (recreated based on maps
in Baran (2023)).

of Iraq. In this study, we have used the Latin al-
phabet which includes 31 letters including basic
26 letters and 5 accented letters (ê, î, û, ç, and ş).
The current NK alphabet is not entirely phonemic.
There are phonemic distinctions in aspirated and
unaspirated consonant pairs, such as ç, k, p, and t,
as well as between the flap and trill r. Additionally,
Arabic loanwords often contain pharyngeal frica-
tives, which are carefully distinguished in most NK
dialects (Öpengin, 2020).

2.2 Whisper

OpenAI’s Whisper (Radford et al., 2023) is a
cutting-edge speech processing model capable of
performing tasks like automatic speech recognition
(ASR), speech-to-text translation (STT), language
identification, and speaker diarization across 100
languages simultaneously. The development team
created a weakly supervised dataset of 680,000
hours of speech data, which could be expanded
through large-scale collection, automated screen-
ing, and processing. They also conducted multi-
task standardized annotation on the transcribed text.
The team chose a multi-layer stacked Transformer
with encoder-decoder structure as the basic network
structure.

Depending on the number of layers, the dimen-
sion of feature representation (width), and the num-
ber of attention heads, the model was divided into
five versions (Tiny, Small, Base, Medium, and
Large). Table 1 summarizes the properties of each
version. Large-v2 has 2.5 times more training iter-
ations compared to other large versions. Large-v3
(Peng et al., 2024) uses data collection and process-
ing like pseudo-labeling with Large-v2 to increase
the training data to five million hours. Both large-
v2 and large-v3 models outperform the large model,
and the large-v3 model demonstrates even stronger
capabilities than the large-v2 (Zhang et al., 2024).



Model Layers Width Heads Parameters
Tiny 4 384 6 39M
Base 6 512 8 74M
Small 12 768 12 244M
Medium 24 1024 16 769M
Large 32 1280 20 1150M

Table 1: Architecture Details of the Whisper Model
Family

In terms of model training, Whisper uses multi-task
training to update and optimize model parameters,
including recognition, English translation, speech
activation detection, and language identification.
Whisper boasts superior multi-language ASR and
translation capabilities (Wang et al., 2023). In some
languages, its performance is even comparable to
or better than that of humans. Whisper is becoming
increasingly popular due to its advanced features
and extensive applications.

2.3 Fine-tuning

Fine-tuning involves adjusting the model parame-
ters to fit the hypothesis space of the target task
using a much smaller amount of data than the
pre-training data. It is typically used when the
source and target domains are similar. There
are several research studies on using fine-tuning
techniques to improve model performance. Well-
known self-supervised speech models such as the
Wav2Vec series (Baevski et al., 2020), HuBERT
(Hsu et al., 2021), and Massively Multilingual
Speech (MMS) (Barrault et al., 2023) require fine-
tuning on domain-specific data to adapt to down-
stream tasks.

However, there are three main challenges with
fine-tuning. Firstly, due to the large parameter size
of the models (hundreds of millions or even bil-
lions), updating all parameters during fine-tuning
can be computationally and time-consuming. Sec-
ondly, fitting a small amount of data with large pa-
rameters may lead to overfitting, resulting in poor
generalization performance. Finally, large mod-
els have general capabilities for multiple tasks or
languages. Still, after fine-tuning, they may only
perform well on the target task or language, los-
ing their general abilities known as catastrophic
forgetting.

Overfitting and catastrophic forgetting can de-
grade the generalization ability of a trained model.
However, the former is specific to a single language
train and test dataset, while the latter concerns mul-
tiple languages. Numerous research efforts have

been made to use improved fine-tuning strategies
to address these issues. Rosin et al. used a partial
parameter freezing strategy when adapting an ASR
system to Germany and explored the impact of
different freezing configurations on system perfor-
mance (Pekarek Rosin and Wermter, 2023). Pasad
et al. (2021) reinitialized the last 1–3 layers of the
Wav2Vec 2.0 model, achieving even better results
than the pre-trained model. Kannan et al. (2019)
introduced a bottleneck adapter into the model, fa-
cilitating full adaptation to specific languages.

3 Related Works

ASR is one of the domains that has made remark-
able progress, particularly with the rise of deep
learning and transformer-based models. Neverthe-
less, low-resource language is still a problem for
languages such as NK since the available data is
limited and the languages are diverse. This section
provides a background of prior research ASR for
Kurdish Dialects.

3.1 ASR for Kurdish Dialects

Abdullah and Veisi (2022) introduced a Central
Kurdish ASR system based on deep learning tech-
niques. They emphasized the importance of collect-
ing extensive data, using a large text database and
a 43-hour AsoSoft speech database to develop reli-
able ASR models. Their approach combined Recur-
rent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs) to improve recognition
accuracy. Key insights from their study include
the critical role of transfer learning and language
model adaptation in enhancing ASR performance
for low-resource languages like Kurdish.

Veisi et al. (2022) developed an ASR system
named Jira for Central Kurdish, utilizing a Kur-
dish speech corpus and a pronunciation dictionary
that captures the unique characteristics of Kur-
dish phonemes. Their work explored both tradi-
tional Hidden Markov Models (HMMs) and neu-
ral network-based models, achieving performance
comparable to state-of-the-art ASR systems. This
study demonstrated the effectiveness of integrating
diverse data sources and modeling approaches to
address low-resource language ASR challenges.

Another study, by Gupta and Boulianne (2022),
focused on multilingual speech recognition for low-
resource languages such as Northern Kurdish, Cree,
and Inuktitut. Using a Common Voice dataset with
approximately 68 hours of Kurmanji speech data,



they fine-tuned the Wav2Vec 2.0 model. Their
adapted XLSR-53 model achieved a Word Error
Rate (WER) of 16%, highlighting the viability of
multilingual approaches for these languages.

Further advancing Kurdish ASR, Abdullah et al.
(2024b) implemented an end-to-end transformer-
based Wav2Vec 2.0 model for Central Kur-
dish. Leveraging a 100-hour speech corpus, they
achieved a WER as low as 10%, marking a signif-
icant breakthrough for ASR in this low-resource
language.

These studies reflect substantial progress in Kur-
dish ASR by leveraging deep learning, extensive
data collection, and advanced modeling strategies.
They underscore the potential to develop effective
ASR systems for Kurdish and other low-resource
languages, thus advancing the field.

4 Proposed method

In this study, an end-to-end transformer-based ASR
system has been developed for NK. The system
leverages OpenAI’s Whisper model, which is multi-
task capable and extensively pre-trained on diverse
datasets. To address the challenges of adapting to
NK, we fine-tuned Whisper using an NK speech
corpus, capturing the phonetic and grammatical
nuances unique to the language. This process in-
cluded character and numerical scaling, as well as
fine-tuning specific parameters for enhanced per-
formance. Our approach aimed to improve recog-
nition accuracy and increase the model’s resilience
to adversarial perturbations, showcasing the capa-
bility of transformers in handling low-resource lan-
guages. Figure 1 illustrates the core architecture
of our method, which includes pre-processing, pre-
training, and fine-tuning stages. These stages are
further detailed in the subsequent sections.

4.1 Preprocessing phase

Text normalization is a crucial step in ASR prepro-
cessing to improve model input. For NK, specific
procedures are followed to ensure the text data is
consistent and free of variations that could affect
ASR performance. This section outlines the steps
for standardizing and normalizing NK sentences.

The Latin alphabet for Kurdish includes five
accented letters (’ê’, ’î’, ’û’, ’ç’, and ’ş’). How-
ever, users sometimes type using non-standard
keyboards or keyboard layouts from other lan-
guages, leading to non-standard forms of these
characters. Therefore, it’s important to recognize

Original
string

Normalized string

1,234 hezar û du sed û sih û çar
12.34 duwazdeh poynt sih û çar
$45.67 çil û pênc poynt şêst û heft

dolaran
85% heştê û pênc ji sed
-123 naqis sed û bîst û sê

Table 2: A few examples from the numerical normaliza-
tion process.

these variations and replace them with the stan-
dard forms. We replaced [’êèëēĕėe̋è’], [’ìíïīĭi’],
[’ûùüūŭű’], [’čćċĉc. ’], and [ŝšśs.ṡs̋s

¯
] with ’ê’, ’î’,

’û’, ’ç’, and ’ş’, respectively. As most NK users
have the Turkish keyboard layout installed on their
devices, some Turkish-specific characters appear
in NK corpora. We also replaced [’g’] with ‘g’, and
[ii] with ‘i’.

Numerical Normalization Numerical normal-
ization is a critical preprocessing step for NK text
that ensures that numerical data is consistently for-
matted and easily comprehensible (Jamshidi and
Daneshfar, 2022). This process involves converting
integers, floating-point numbers, percentages, and
currencies into Kurdish words as they would be
spoken aloud. By transforming infinite numeral to-
kens into a finite set of standard words, this normal-
ization step helps maintain consistency, enhances
clarity, and improves ASR application performance
by mitigating out-of-vocabulary (OOV) issues. As
a result, it reduces interpretation errors and con-
tributes to more reliable and accurate text process-
ing outcomes. Table 2 shows some examples from
the numerical normalization step.

4.2 Pre-training

The Whisper model uses a sequence-to-sequence
approach, converting audio spectrogram features
into text tokens. This study employed the Whisper
large-v3 model—-a Transformer-based encoder-
decoder developed by OpenAI, as illustrated in
Figure 3. This model is a significant advancement
in ASR, trained on over five million hours of la-
beled and pseudo-labeled data. It improves upon
earlier versions by increasing the number of Mel
frequency bins in the spectrogram input while main-
taining the same core architecture as the large and
large-v2 models. Trained for two epochs on a di-
verse dataset, Whisper large-v3 excels in gener-



Figure 3: Whisper large -v3 (Radford et al., 2023)

alizing across various domains, even in zero-shot
settings, The model achieves a 10% to 20% reduc-
tion in errors compared to its predecessor. In this
work, we fine-tuned the pre-trained Whisper large-
v3 model on our NK speech corpus, adapting it to
NK’s unique phonetic and linguistic features.

4.3 Fine-tuning

We pre-processed the audio data to meet the
model’s requirements for fine-tuning the Whisper
model on our NK speech corpus. This involved con-
verting raw audio into Log-Mel spectrograms (see
Figure 4), which were fed into the model’s encoder.
Text transcriptions were tokenized with the Whis-
per Tokenizer, pre-trained on multiple languages,
ensuring broad coverage for our target language.

For fine-tuning, we adjusted the pre-trained
Whisper model’s parameters using our NK speech
corpus, explicitly setting the language and task pa-
rameters. The process used a cross-entropy objec-
tive, standard for training sequence-to-sequence
models. The Trainer handled data collation, gradi-
ent accumulation, and metric evaluation over sev-
eral epochs, assessing performance with the WER
metric at each step. Our fine-tuned model showed
notable ASR improvements for NK, confirming
the effectiveness of the Whisper large-v3 model
for low-resource languages. A held-out test set
validated the model’s ability to generalize well to
unseen NK speech. Different fine-tuning methods
exploited in this work, are discussed in the follow-
ing.

1. Vanilla Fine-Tuning We began fine-tuning
with a Vanilla Fine-Tuning approach, using the
entire Whisper model without modifications, allow-
ing all parameters to adapt to the NK speech cor-
pus. The goal was to align the model’s pre-trained

Figure 4: Conversion of sampled speech array to log-
Mel spectrogram

weights with our dataset. The process involved
feeding Log-Mel spectrograms into the encoder
and tokenizing transcriptions with the Whisper To-
kenizer. Training with a cross-entropy objective
function over several epochs helped the model cap-
ture NK-specific nuances without added complexi-
ties or constraints.

2. Specific Parameter Fine-Tuning Building on
the vanilla fine-tuning results, we moved to Specific
Parameter Fine-Tuning, focusing on most relevant
key parameters to our target task, such as atten-
tion layers, crucial for contextual understanding
in NK. By selectively adjusting these parameters,
we reduced overfitting risks while enhancing per-
formance on the NK speech corpus. This targeted
approach enabled the model to better capture NK’s
unique linguistic features.

3. Additional Module Fine-Tuning To further
boost performance, we implemented Additional
Module Fine-Tuning, integrating a newly trained
tokenizer based on a 50-million-token NK text cor-
pus. This hybrid tokenizer, combined with the
Whisper Tokenizer, improved NK speech tokeniza-
tion by addressing language-specific challenges.
The fine-tuning process involved adjusting both
the new tokenizer and additional language mod-
ules allowed the model to better capture NK’s lin-
guistic nuances, enhancing transcription accuracy
and its ability to generalize to unseen data. This
underscores the benefit of combining specialized



tokenizers with pre-trained model components.

5 Experiments and analysis

We conducted experiments to evaluate the perfor-
mance of various fine-tuning strategies on the Whis-
per model and to assess our end-to-end transformer-
based ASR system for NK. These experiments used
the NK Speech Corpus. The following subsections
describe the corpus, experiment setups, evaluation
metrics, and our findings.

5.1 Northern Kurdish Speech Corpus
A) Training and Validation Sets The NK
Speech Corpus, a key part of the Common Voice
Corpus 18.0 (Ardila et al., 2020), plays a vital role
in advancing speech technology for NK. Released
on June 18, 2024, this comprehensive dataset in-
cludes 1.78 GB of audio data, with 101 hours
recorded and 68 hours rigorously validated for qual-
ity. It is freely available under the CC-0 license,
enabling use in both academic and commercial
projects. The dataset comprises 567 unique voices,
provided in MP3 format to ensure accessibility.

Although nearly half (48%) of the data lacks
specific demographic details, it is evident that the
contributions are biased toward younger individ-
uals (aged 20-29) and predominantly male (with
43% male contributors compared to only 9% fe-
male) 1.

B) Test Set The test set was carefully designed to
ensure an accurate evaluation of the Kurdish ASR
model’s performance. It comprises sentences and
speakers not included in the training set, ensuring
the model is tested on its ability to generalize be-
yond the training data. We selected 200 diverse
sentences for the test set to cover a wide range of
linguistic contexts and speech scenarios, offering
a broad representation of the language. These 200
sentences were recorded by 50 unique speakers,
adding variety in pronunciation, accent, and speak-
ing style. This diversity is crucial for assessing how
well the model generalizes across different voices
and dialects. By including varied speakers, the test
set simulates real-world conditions, providing a
realistic benchmark for the model’s performance.
Full details of the test set are presented in Table 3.

5.2 ASR Evaluation Criteria
ASR systems are evaluated using several key met-
rics to determine their effectiveness, accuracy, and

1https://commonvoice.mozilla.org/en/datasets

Specification Details
Total Number of Sentences 200
Total Number of Speakers 50
Duration (Hours) 03:25:00
Frequency 22.05 kHz
Sampling Resolution 16 Bit, Mono
Format MS WAV

Table 3: The overall specification of the speech test set

suitability for specific applications. The following
are basic assessment criteria commonly used in
ASR research and development:

Word Error Rate (WER) is the most widely
used metric for ASR systems. It calculates the
proportion of words incorrectly recognized by the
ASR system compared to a reference transcript. A
lower WER indicates higher recognition accuracy,
providing a clear view of the errors in the ASR
output relative to all spoken words.

Character Error Rate (CER) assesses ASR ac-
curacy at the character level, calculating the per-
centage of characters misrecognized. CER is par-
ticularly useful for logographic languages and ap-
plications where character-level accuracy is crucial,
such as handwriting recognition. This metric is
beneficial for cases where precise character recog-
nition significantly impacts system performance.

WER and CER are calculated as:

S +D + I

N
∗ 100

where S, D, I , and N represent the number
of substitutions, deletions, insertions, and total
words/characters in the reference transcript, respec-
tively.

5.3 Experimental Setup
The NK ASR corpus includes about 68 hours of
audio, with 90% used for training to expose the
model to diverse voice samples. The remaining
10% is set aside for evaluation, monitoring perfor-
mance, and tuning hyper-parameters. A controlled
set of 200 sentences, recorded by 50 native speak-
ers, introduces variation in pronunciation, accent,
and style to prevent overfitting and ensure a fair
assessment of the model’s generalizability.

Training utilized two NVIDIA RTX 4090 GPUs
in SLI mode, offering enhanced processing power
and memory bandwidth. The system’s 290 GB
RAM accommodated large data and models.

https://commonvoice.mozilla.org/en/datasets


Model Version Fine-Tuning Strategy WER CER
Whisper V1 Vanilla Fine-Tuning 14.5% 8.2%
Whisper V1 Specific Parameter Fine-Tuning 13.1% 7.8%
Whisper V1 Additional Module Fine-Tuning 12.0% 7.0%
Whisper V2 Vanilla Fine-Tuning 13.8% 7.9%
Whisper V2 Specific Parameter Fine-Tuning 12.2% 6.7%
Whisper V2 Additional Module Fine-Tuning 11.3% 6.2%
Whisper V3 Vanilla Fine-Tuning 13.2% 7.5%
Whisper V3 Specific Parameter Fine-Tuning 11.8% 6.3%
Whisper V3 Additional Module Fine-Tuning 10.5% 5.7%

Table 4: The performance comparison of fine-tuning strategies and Whisper model versions

DeepSpeed was employed to maximize RAM
and GPU efficiency during training. By leverag-
ing features like ZeRO, which distributes model
states across GPUs, DeepSpeed minimizes mem-
ory redundancy, allowing for larger models and
batch sizes. Gradient checkpointing and mixed
precision were also implemented, which reduce
memory usage by recomputing certain activations
as needed and performing lower-precision calcula-
tions. These optimizations prevent memory over-
load, accelerate training by using multiple GPUs in
parallel, shorten epoch times, and increase conver-
gence rates by efficiently handling large datasets.

Given the complex training process—which in-
volves multiple encoding rounds and dataset par-
titioning for training, validation, and testing—the
model’s structure required careful optimization. As
a result, training spanned several epochs, with crit-
ical metrics such as loss and accuracy monitored
throughout.

Hyper-parameter tuning was essential, with set-
tings including a 1e-5 base learning rate, 500
warmup steps, and a maximum of 500,000 steps to
ensure stable and thorough training. Fine-tuning
involved:

1. Preparation: Ensure Whisper model and NK
data are preprocessed and ready.

2. Configuration: Adjust the training script with
DeepSpeed optimizations, a learning rate of
1e-5, 500 warmup steps, and a 500,000-step
maximum.

3. Training: Use DeepSpeed for efficient dis-
tributed processing. Track metrics like loss
and accuracy to monitor convergence.

4. Evaluation and Tuning: Regularly assess the
model on validation and test sets, adjusting

hyper-parameters as needed.

5. Finalization: Save the trained model once
satisfactory performance is achieved for de-
ployment or further evaluation.

5.4 Result and Discussion
The performance of the Whisper model fine-tuned
with different strategies, was evaluated using the
NK Speech Corpus test set. We also compared
the results across different versions of the Whisper
model pre-trained on English data. The results are
summarized in Table 4.

As shown in Table 4, the results indicate varying
performance levels across different versions of the
Whisper model. For Whisper V1, all fine-tuning
strategies enhanced performance compared to the
baseline but did not achieve the levels reached by
later versions. Whisper V2 showed improved re-
sults, with additional module fine-tuning yielding
a Word Error Rate (WER) of 11.3% and a Charac-
ter Error Rate (CER) of 6.2%. The latest version,
Whisper V3, achieved the lowest WER of 10.5%
and a CER of 5.7% with additional module fine-
tuning, demonstrating its superior ability to handle
NK phonetics and nuances. Overall, the compari-
son suggests that while all Whisper model versions
benefited from fine-tuning, Whisper V3 with addi-
tional module fine-tuning delivered the most sig-
nificant improvements. This indicates that newer
versions of the Whisper model, combined with ad-
vanced fine-tuning techniques, provide substantial
advantages in processing low-resource languages
like NK.

Table 5 compares the performance of two Bench-
marks in Northern Kurdish (Kurmanji) ASR tasks:
Wav2Vec2.0 XLSR-53 (reported by (Gupta and
Boulianne, 2022)) and our Whisper V3 model. The
Wav2Vec2.0 XLSR-53 achieved a WER of 16.3%



Model WER CER
Wav2Vec2.0 XLSR-53 16.3% 9.2%

Whisper V3 Benchmark (ours) 10.5% 5.7%

Table 5: Comparison of performance between two
Northern Kurdish ASR systems: Wav2Vec2.0 XLSR-53
(Gupta and Boulianne, 2022) and our Whisper V3.

and a CER of 9.2%, indicating some limitations
in accurately encoding all linguistic and phonetic
information in NK speech. In contrast, the Whis-
per V3 Benchmark outperformed it by a significant
margin, achieving a 5.8% lower WER and 3.5%
lower CER.

These results indicate that Whisper V3 tran-
scribes NK with significantly lower word and char-
acter error rates. Lower-resource languages like
NK are handled more effectively than with Whis-
per V1 and previous methods, thanks to advance-
ments in Whisper V3’s architecture and fine-tuning
techniques. This establishes a new benchmark,
with Whisper V3 outperforming its predecessor,
Wav2Vec 2 XLSR-53. Consequently, Whisper V3
is a superior choice for spoken language documen-
tation tasks in low-resource languages due to its
enhanced accuracy.

6 Conclusion

This study demonstrates the effectiveness of fine-
tuning Whisper, a state-of-the-art ASR model, for
low-resource languages like Northern Kuddish
(Kurmanji). Our findings reveal that fine-tuning
significantly improves Whisper’s performance, es-
pecially in newer versions like Whisper V3. Com-
pared to traditional models, Whisper V3 offers
higher accuracy and sensitivity for NK speech.
This research highlights the potential of advanced
transformer models for addressing language tech-
nology gaps in underrepresented languages.

Future work could explore the integration of
additional linguistic features and a more diverse
dataset to further enhance performance. This study
serves as a step toward more accessible ASR tech-
nology, with broader implications for language
preservation and cultural engagement.
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